1. Ahn, D. H, J Boudoukh, M Richardson, and R. F Whitelaw, 2002, Partial Adjustment or Stale Prices?Implications from Stock Index and Futures Return Autocorrelations,
Review of Financial Studies, Vol. 15 (2), pp. 655-689.
2. Andersen, T. G, T Bollerslev, F. X Diebold, and H Ebens, 2001, The Distribution of Realized Stock Return Volatility,
Journal of Financial Economics, Vol. 61 (1), pp. 43-76.
3. Bahng, S. W, 2004, Response Asymmetries in Return and Volatility:Evidence from Japan and South Korea, Korean Journal of Financial Studies, Vol. 33 (2), pp. 245-274.
4. Bariviera, A. F, M. J Basgall, W Hasperué, and M Naiouf, 2017, Some Stylized Facts of the Bitcoin Market,
Physica A, Vol. 484, pp. 82-90.
5. Bodie, Z, A Kane, and A. J Marcus, Essentials of Investments,9th ed. New York: McGraw-Hill, 2013.
6. Bollerslev, T, 1986, Generalized Autoregressive Conditional Heteroskedasticity,
Journal of Econometrics, Vol. 31 (3), pp. 307-327.
7. Bollerslev, T, 1987, A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return,
Review of Economics and Statistics, Vol. 69 (3), pp. 542-547.
8. Bollerslev, T, and H. O Mikkelsen, 1996, Modeling and Pricing Long Memory in Stock Market Volatility,
Journal of Econometrics, Vol. 73 (1), pp. 151-184.
9. Brock, W. A, D. A Hsieh, and B. D LeBaron, Nonlinear Dynamics, Chaos, and Instability:Statistical Theory and Economic Evidence, MIT Press, Cambridge, 1991.
10. Brock, W, J Lakonishok, and B LeBaron, 1992, Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,
Journal of Finance, Vol. 47 (5), pp. 1731-1764.
12. Choi, S. Y, and J Shin, 2018, The Herding and Asymmetric Volatility of the US Stocks and the Cryptocurrency,
Korean Journal of Financial Management, Vol. 35 (4), pp. 163-184.
13. Choi, S. Y, and J Shin, 2019, Analysis of Cryptocurrency Volatility, Korean Journal of Financial Management, Vol. 36 (2), pp. 65-82.
14. Cont, R, 2001, Empirical Properties of Asset Returns:Stylized Facts and Statistical Issues,
Quantitative Finance, Vol. 1 (2), pp. 223-236.
15. Da Cunha, C. R, and R da Silva, 2020, Relevant Stylized Facts about Bitcoin:Fluctuations, First Return Probability, and Natural Phenomena,
Physica A, Vol. 550, pp. 124155.
16. D'Agostino, R. B, and M. A Stephens, Goodness-of-fit Techniques,New York: Marcel Dekker, 1986.
17. Duffie, D, and J Pan, 1997, An Overview of Value at Risk,
Journal of Derivatives, Vol. 4 (3), pp. 7-49.
18. Engle, R. F, 1982, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,
Econometrica, Vol. 50 (4), pp. 987-1007.
19. Fama, E. F, 1970, Efficient Capital Markets:A Review of Theory and Empirical Work,
Journal of Finance, Vol. 25 (2), pp. 383-417.
20. Fama, E. F, 1991, Efficient Capital Markets:II,
Journal of Finance, Vol. 46 (5), pp. 1575-1617.
21. Fang, H, and T. Y Lai, 1997, Co-Kurtosis and Capital Asset Pricing,
Financial Review, Vol. 32 (2), pp. 293-307.
22. Glosten, L. R, R Jagannathan, and D. E Runkle, 1993, On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,
Journal of Finance, Vol. 48 (5), pp. 1779-1801.
23. Hansen, B. E, 1994, Autoregressive Conditional Density Estimation,
International Economic Review, Vol. 35 (3), pp. 705-730.
24. Härdle, W, Smoothing Techniques:With Implementation in S,New York: Springer-Verlag, 1991.
25. Houthakker, H. S, 1961, Systematic and Random Elements in Short-Term Price Movements, American Economic Review, Vol. 51 (2), pp. 164-172.
26. Hu, A. S, C. A Parlour, and U Rajan, 2019, Cryptocurrencies:Stylized Facts on a New Investible Instrument,
Financial Management, Vol. 48 (4), pp. 1049-1068.
27. Kakinaka, S, and K Umeno, 2022, Cryptocurrency Market Efficiency in Short- and Long-Term Horizons During COVID-19:An Asymmetric Multifractal Analysis Approach,
Finance Research Letters, Vol. 46, pp. 102319.
28. Kang, S. H, and S. M Yoon, 2007, Can the Skewed Student-t Distribution Assumption Provide Accurate Estimates of Value-at-Risk?, Korean Journal of Financial Management, Vol. 24 (3), pp. 153-186.
29. Kendall, M. G, and A. B Hill, 1953, The Analysis of Economic Time-Series-Part I:Prices Journal of the Royal Statistical Society, Series A (General), Vol. 116 (1), pp. 11-34.
30. Kim, J. S, 2022, Investor Sentiment and Mean-variance Relationship in Cryptocurrency Market,
Asian Review of Financial Research, Vol. 35 (3), pp. 35-66.
31. Kim, K. H, and J. H Lee, 2005, Usefulness and Limitations of Extreme Value Theory VAR model:The Korean Stock Market, Korean Journal of Financial Management, Vol. 22 (1), pp. 119-146.
32. Kim, N, 2013, Statistical Properties of Mutual Fund Returns:Empirical Evidence on Stylized Facts, Journal of the Korean Data Analysis Society, Vol. 15 (1), pp. 407-422.
33. Ku, B. I, 2000, A Study on the Asymmetric Property of Return Volatility in Korean Stock Market, Asian Review of Financial Research, Vol. 13 (1), pp. 129-159.
34. Lee, G, D. Y Joe, and J Jeong, 2019, An Investigation of Dynamic Price Movements of the Cryptocurrency Coin in Korea,
Asian Review of Financial Research, Vol. 32 (3), pp. 383-400.
35. Lee, S, 2021, Current State of Virtual Assets:Issuance and Trading Capital Market Focus, 2021-15, Korea Capital Market Institute,
36. Longin, F. M, 1996, The Asymptotic Distribution of Extreme Stock Market Returns,
Journal of Business, Vol. 69 (3), pp. 383-408.
37. MacKinnon, J. G, 1996, Numerical Distribution Functions for Unit Root and Cointegration Tests,
Journal of Applied Econometrics, Vol. 11 (6), pp. 601-618.
38. Mandelbrot, B, 1963, The Variation of Certain Speculative Prices,
Journal of Business, Vol. 36 (4), pp. 394-419.
39. Marron, J. S, and D Nolan, 1988, Canonical Kernels for Density Estimation,
Statistics and Probability Letters, Vol. 7 (3), pp. 195-199.
40. Moon, S. J, D. C Lee, D. H Kim, and S. K Oh, 2003, Estimation and Performance of VaR Using Extreme Value Theory, Asia-Pacific Journal of Financial Studies, Vol. 32 (3), pp. 223-268.
41. Nelson, D. B, 1991, Conditional Heteroskedasticity in Asset Returns:A New Approach,
Econometrica, Vol. 59 (2), pp. 347-370.
42. Ohk, K. Y, 1997, An empirical study on the asymmetric effect of news on volatility, Asia-Pacific Journal of Financial Studies, Vol. 21 (1), pp. 295-324.
43. Pagan, A, 1996, The Econometrics of Financial Markets,
Journal of Empirical Finance, Vol. 3 (1), pp. 15-102.
44. Razali, N. M, and Y. B Wah, 2011, Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests, Journal of Statistical Modeling and Analytics, Vol. 2 (1), pp. 21-33.
45. Samuelson, P. A, 1965, Proof that Properly Anticipated Prices Fluctuate Randomly,
Industrial Management Review, Vol. 6 (2), pp. 41-50.
47. Silverman, B. W, Density Estimation for Statistics and Data Analysis, Chapman &Hall, London, 1986.
48. Smith, D. R, 2007, Conditional Coskewness and Asset Pricing,
Journal of Empirical Finance, Vol. 14 (1), pp. 91-119.
49. Takaishi, T, 2018, Statistical Properties and Multifractality of Bitcoin,
Physica A, Vol. 506, pp. 507-519.
50. Zhang, Y, J Chan, S Chu, and S Nadarajah, 2019, Stylised Facts for High Frequency Cryptocurrency Data,
Physica A, Vol. 513, pp. 598-612.